当前位置:首页 » 电影百科 » 费马大定理电影内容是什么
扩展阅读
小师姐大电影 2023-08-31 22:05:11
十大禁播韩国电影 2023-08-31 22:05:02
一个外国电影木瓜 2023-08-31 22:04:55

费马大定理电影内容是什么

发布时间: 2022-05-29 03:19:03

1. 费马大定理内容谁知道

当n是一个大于2的正整数时,不定方程x^n+y^n =z^n没有正整数解,这一结论是1637年左右费马提出的,被称为费马猜想,习惯上又称为费马大定理。
已被沈阳杨宝泉与大连杨兴证明了。题为《费马大定理巧妙证明》,发表在《沈阳航空工业学院学报》2008年第三期,已收录到中国期刊全文数据库,中文科技期刊数据库,中国学术期刊数据库----------.到网上一查就可以看到。

2. 什么是费马定理

费马大定理: 当整数n > 2时,关于x, y, z的不定方程 x^n + y^n = z^n. 无正整数解。 这个定理,本来又称费马最后定理,由17世纪法国数学家费马提出,而当时人们称之为“定理”,并不是真的相信费马已经证明了它。虽然费马宣称他已找到一个绝妙证明,但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁·怀尔斯和他的学生理查·泰勒于1995年成功证明。证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。而安德鲁·怀尔斯(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。

3. 费马最后定理的内容是什么

费马原理最早由法国科学家皮埃尔·德·费马在1660年提出,又名“最短光时”原理.费马原理:光沿着所需时间为平稳的路径传播.(所谓的平稳是数学上的变分概念,可以简单理解为一阶导数为零,它可以是极大值、极小值甚至是拐点.多数情况是极小值.宇宙学中指的时空透镜就是极大值,椭圆状镜面的表面则是拐点.) 光程s=n l(n 为光所在介质的折射率,l为几何路程) 又因为 n=c/v 和 l=vt 所以得到 s=ct.由此可见,光在某种介质中的光程等于同一时间内光在真空中所走的几何路程.费马原理指出,光从一点传播到另一点,其间无论经过多少次折射和反射,光程为极值.也就是说,光是沿着光程为极值(极大值、极小值或常量)的路径传播的.

4. 费马大定理的内容是什么

历史上有许多人,他们在主要从事的工作方面没有取得什么成果,而在平常茶余饭后的闲暇时间里却取得了了不起的成就。费马就是一个典型。在今天,人们提到皮埃尔·德·费马(1601~1665),主要不是因为他是一个政治家或法官,而是因为他是一个出色的业余数学家。费马在数学的许多领域都进行过研究并小有建树,但真正令他名满天下的是被后人称之为“费马大定理”的猜想。
费马大定理的表述很简单:对于正整数,不可能将一个高于2次的幂写成两个同次幂的和。换句话说就是,方程Xn+Yn=Zn,当n>2时,不存在正整数解。在一本书的页边,费马写到:我有一个对这个命题的十分优美的证明,这里空白太小,写不下。
从此包括大数学家欧拉、柯西在内的无数智者都曾为此殚精竭智,虽然每次都能向前迈进一小步,但都未能最终证明费马大定理。300多年来,很多人声称找到了解决这个难题的办法,然而每一次均为人所推翻。从费马大定理本身来说,证明不证明它对数学的发展没有多大意义。但一方面,这是对智慧的挑战;另一方面,数学家们从证明费马大定理的过程中得到了许多意外的收获,一些新的数学分支和方法正是在对它的研究中产生的。因而,费马大定理的证明一直受到人们
的关注。
关于费马大定理也有不少小插曲,德国人保罗·沃尔夫斯凯尔为费马大定理设立专项基金即是其中之一。按照人们的一般说法,沃尔夫斯凯尔因为失恋而试图结束自己的生命。在他认为一切就绪,准备于某日午夜准时开枪自尽前的一段时间里,发现了一篇关于费马大定理的论文。碰巧的是,沃尔夫斯凯尔本人是一个数学爱好者,不知不觉中竟沉湎于论文中,结果错过了原定的自杀时间。之后,沃尔夫斯凯尔放弃了自杀的念头,并在死前留下遗嘱,把一大笔财富作为奖给第一个证明费马大定理的人,有效期到2007年。
美国普林斯顿大学教授安德鲁·怀尔斯经过7年的潜心研究,于1993年公布了他对费马大定理的证明。他的证明在1995年得到确认并最终获得了沃尔夫斯凯尔留下的奖金。
怀尔斯的证明长达一百多页,其中涉及许多最新的数学知识,目前在世界范围内能看懂的人也屈指可数。因此出现了这样的争议:有人认为这不可能是当年费马所想到的证明,应该还有种比这简单的证明未被发现;但也有许多人倾向于认为当年的费马其实毫无发现,或者只是想到了一个错误的方法。

5. 费马大定理的内容

费马大定理: 当整数n > 2时,关于x, y, z的不定方程 x^n + y^n = z^n. 无正整数解。

6. “费马定理”包括什么内容

在数论方面,最为世人熟识的当然是费马最后定理(Fermat's Last Theorem),但其实还有很重要的费马小定理(Fermat's Little Theorem,加上“小”是用来分别费马大定理的),以及费马二平方数定理(Fermat's Two Squares Theorem),无限下降法和费马数等等,实在是多不胜数。

费马大定理 ,即:不可能有满足 xn+yn=zn ,n >2的正整数x、y、z、n存在。这命题他写在丢番图《算术》( 拉丁文译本,1621)第 2卷的空白处:“……将一个高于二次的幂分成两个同次幂之和,这是不可能的。

费马小定理是数论中的一个定理。定理:(费马小定理) 当p是素数时,对于任意一个整数a不是p的倍数时,有以下的等式 ap-1≡1 (mod p)。
费马最后定理
当整数 n > 2 时,
方程 x n + y n = z n 无正整数解.
勾股定理及勾股数组
勾股定理 在 ABC 中,若 C 为直角,则 a2 + b2 = c2.
留意:32 + 42 = 52; 52 + 122 = 132;
82 + 152 = 172; 72 + 242 = 252; ……等等
即 (3 , 4 , 5),(5 , 12 , 13) … 等等为方程
x 2 + y 2 = z 2 的正整数解.
我们称以上的整数解为“勾股数组”.

7. 费尔马大定理是什么内容

费尔马大定理,起源于三百多年前,挑战人类3个世纪,多次震惊全世界,耗尽人类众多最杰出大脑的精力,也让千千万万业余者痴迷。终于在1994年被安德鲁·怀尔斯攻克。古希腊的丢番图写过一本着名的“算术”,经历中世纪的愚昧黑暗到文艺复兴的时候,“算术”的残本重新被发现研究。

1637年,法国业余大数学家费尔马(Pierre de Fremat)在“算术”的关于勾股数问题的页边上,写下猜想:a+b=c是不可能的(这里n大于2;a,b,c,n都是非零整数)。此猜想后来就称为费尔马大定理。费尔马还写道“我对此有绝妙的证明,但此页边太窄写不下”。一般公认,他当时不可能有正确的证明。猜想提出后,经欧拉等数代天才努力,200年间只解决了n=3,4,5,7四种情形。1847年,库木尔创立“代数数论”这一现代重要学科,对许多n(例如100以内)证明了费尔马大定理,是一次大飞跃。

历史上费尔马大定理高潮迭起,传奇不断。其惊人的魅力,曾在最后时刻挽救自杀青年于不死。他就是德国的沃尔夫斯克勒,他后来为费尔马大定理设悬赏10万马克(相当于现在160万美元多),期限1908-2007年。无数人耗尽心力,空留浩叹。最现代的电脑加数学技巧,验证了400万以内的N,但这对最终证明无济于事。1983年德国的法尔廷斯证明了:对任一固定的n,最多只有有限多个a,b,c振动了世界,获得费尔兹奖(数学界最高奖)。

8. 费尔马大定理是什么

费马大定理,又被称为“费马最后的定理”,由法国数学家费马提出。它断言当整数n >2时,关于x, y, z的方程 x^n + y^n = z^n 没有正整数解。被提出后,经历多人猜想辩证,历经三百多年的历史,最终在1995年被英国数学家安德鲁·怀尔斯证明。

9. “下金蛋的母鸡”——费马大定理讲的是什么

法国数学家费马在数论方面有突出的成就,被誉为“数论之父”。费马闻名于世,是与“费马大定理”是分不开的。

约在1637年,费马在读丢番图的《算术》时,对其中的一个命题“将一个平方数分为两个平方数;将一个四次方数分解为两个四次方数;或者一般地将一个高于二次幂的任何乘幂分成两个同次幂之和?”他的回答是否定的。这个定理,即当整数n>2时,关于x、y、z的方程xn+yn=zn均无整数解,这就是所谓的费马大定理。费马说:“我想出了这个论断的一个真正奇妙的证明,只是这里的空白狭小,不容我把它写下来。”

费马对于这个定理的“奇妙证明”,始终没有找到。但这个定理吸引了许许多多的数学家,但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁?怀尔斯和他的学生理查?泰勒于1995年成功证明。证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。而安德鲁?怀尔斯由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。在证明费马定理的过程中产生了许多数学成果,拓宽了数学的领域,促进了数学的发展。因此德国的数学家希尔伯特说:“这是一只下金蛋的母鸡。”